GENETIC TRANSFORMATION OF Melia azedarach L., USING Agrobacterium MEDIATED TRANSFORMATION

Autor(s): Arif Nirsatmanto, Koichiro Gyokusen
DOI: 10.20886/ijfr.2007.4.1.1-8

Abstract

This study was subjected to observe the possibility of  introducing specific foreign genes into Melia azedarach L., using Agrobacterium mediated transformation. Agrobacterium tumefaciens used in this study consisted of  strains of  EHA105 (vector plasmid pBIsGFP) and EHA105 (vector plasmid pBsGFP) to observe the possibility of introducing genes, and strains of EHA101 (vector plasmid pIG121-Hm) and LBA4404/ferritin (vector plasmid pBG-1) to observe the shoot organogenesis after genes transformation. Explants were collected from one cm in length excised stem of in-vitro plantlets. The results of the study showed that genetic transformations of M. azedarach could be potentially developed using Agrobacterium tumefaciens strains : EHA105 (pBIsGFP or pBsGFP), EHA101 (pGI121-Hm) and LBA4404/ferritin (pBG-1). The expression of  GFP (green fluorescence protein) signal worked successfully in this transformation  with 40% of transformation  rate for pBIsGFP and 20 % for pBsGFP.  The application of Agrobacterium strains of EHA101 (pIG121-Hm) and LBA4404/ferritin (pBG-1) which contained specific gene of kanamycin resistance and iron accumulation for plant growth improvement showed that adventitious shoot was well induced and elongated on the rate of 30 - 60 % of explants after genes transformation.

Keywords

Melia azedarach L., in-vitro culture, genetic transformation, Agrobacterium tumefaciens

Full Text:

PDF

References

Cheliak, W. M. and D. L. Rogers. 1990. Integrating biotechnology into tree improvement programs. Canadian Journal of Forest Research 20:452-463.

Goto, F., T. Yoshihara, and H. Saiki. 1998. Iron accumulation in tobacco plants expressing soybean ferritin gene. Transgenic Research 7:173-180.

Goto F., T. Yoshihara, and H. Saiki. 2000. Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin. Theoretical and Applied Genetic 100:658-664.

Harcourt, R. L., J. Kyozuka, R.B. Floyd, K.S. Bateman, H. Tanaka, V. Decroocq, D. J. Lewellyn, X. Zhu, W. J. Peacock, and E. S. Dennis. 2000. Insect-and herbicide- resistant transgenic eucalypts. Molecular Breeding 6:307-315.

Hood, E. E., G. L. Helmer, R. T. Fraley, and M. D. Chilton. 1986. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. Journal of Bacteriol Bacteriology 168:1291-1301.

Huang, R. C., K. Tadera, F. Yagi, Y. Minami, H. Okamura, T. Iwagawa, and M. Nakatani. 1996. Limonoids from Melia azedarach. Phytochemistry 43:581-583.

Itokawa, H., Z. Qiao, C. Hirobe, and K. Takeya. 1995. Cytotoxic limonoids and tetranortriterpenoids from Melia azedarach. Chemical and Pharmaceutical Bulletin 43:1171-1175.

Kawazu, T., K. Doi, Y. Tatemichi, K. Ito, and M. Shibata. 1996. Regeneration of transgenic plants by nodule culture system in Eucalyptus camaldulensis. In: M. J. Dieters, A. C. Matheson, D. G. Nikles, C. E. Harwood, and S. M. Walker (Eds.), Tree Improvement for Sustainable Tropical Forestry. Proceedings of the QFRI-IUFRO Conference, Caloundra, Queensland, Australia, 27 October-1 November. 492-497 pp.

Mc Kelvey, S. D. 1928. The Lilac : a monograph. The Mac Milan Company. New York.

Muramatsu, T., A. Nakamura, and H. M. Park. 1998. In vivo electroporation: A powerful and convenient means of non-viral gene transfer to tissues of living animal (Review). International Journal of Molecular Medicine 1:55-62.

Nirsatmanto, A. 2002. Development of shoot organogenesis system of Melia azedarach L., and its application for genetic transformation. Master Thesis. Kyushu University, Japan.

Otani, M., T. Shimada, T. Kimura, and A. Saito. 1998. Transgenic plant poduction from embryogenic callus of sweet potato (Ipomoea batatas Lam.) using Agrobacterium tumefaciens. Plant and Biotechnology 15:11-16.

Refbacks

  • There are currently no refbacks.