Abstract
Keywords
Full Text:
PDFReferences
Albar, I., Jaya, I.N.S., Saharjo, B.H., Kuncahyo, B., Vadrevu, K.P. (2018). Spatio-temporal analysis of land and forest fires in Indonesia using MODIS Active fire dataset. Springer Remote Sensing/Photogrammetry. Springer, Cham. doi://10.1007/978-3-319-67474-2_6.
Andrienko, G., Andrienko, N., Demsar, U., Dransch, D., Dykes, J., Fabrikant, S.I., Jern, M., Kraak, M.J., Schumann, H., Tominski, C., 2010. Space, time and visual analytics. International Journal of Geographical Information Science. 24, 1577–1600. doi://10.1080/13658816.2010.508043.
Atluri, G., Karpatne, A., Kumar, V., 2018. Spatio-temporal data mining: A survey of problems and methods. ACM Computing Surveys. 51(4) Article 83, 1-41. doi://10.1145/3161602.
Broich, M., Hansen, M.C., Potapov, P., Adusei, B., Lindquist, E., Stehman, S. V., 2011. Time-series analysis of multi-resolution optical imagery for quantifying forest cover loss in Sumatra and Kalimantan, Indonesia. International Journal of Applied Earth Observation and Geoinformation. 13, 277–291. doi://10.1016/j.jag.2010.11.004.
Compieta, P., Di Martino, S., Bertolotto, M., Ferrucci, F., Kechadi, T., 2007. Exploratory spatio-temporal data mining and visualization. Journal of Visual Languages and Computing. 18(3), 255-279. doi://10.1016/j.jvlc.2007.02.006.
Endrawati, E., (2018). Identifikasi areal bekas kebakaran hutan dan lahan menggunakan analisis semi otomatis citra satelit landsat. Seminar Nasional Geomatika 2, 273. doi://10.24895/sng.2017.2-0.420.
Fischer, C., Pardos, Z.A., Baker, R.S., Williams, J.J., Smyth, P., Yu, R., Slater, S., Baker, R., Warschauer, M., 2020. Mining big data in education: Affordances and challenges.Review of Research in Education. 44(1), 130-160. doi://10.3102/0091732X20903304.
Foga, S.C., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B., Joseph Hughes, M., Laue, B., (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment. 194 (June), 379–390. doi://10.1016/j.rse.2017.03.026.
Langner, A., & Siegert, F. (2009). Spatiotemporal fire occurrence in Borneo over a period of 10 years. Global Change Biology. 15(1), 48–62. doi://10.1111/j.1365-2486.2008.01828.x.
Li, Z., Liu, Q., Tang, J., & Deng, M.(2018). An adaptive method for clustering spatio-temporal events. Transactions in GIS, 22, 323-347. doi://10.1111/tgis.12312.
Liu, F., & Deng, Y. (2021). Determine the number of unknown targets in open world based on elbow method. IEEE Transactions on Fuzzy Systems. 29 (5), 986-995. doi://10.1109/TFUZZ.2020.2966182.
Obregon, A., Gehrig-Downie, C., Gradstein, S.R., & Bendix, J. (2014). The potential distribution of tropical lowland cloud forest as revealed by a novel MODIS-based fog/low stratus night-time detection scheme. Remote sensing of environment. 155, 312–324. doi://10.1016/j.rse.2014.09.005.
Pei, T., Song, C., Guo, S., Shu, H., Liu, Y., Du, Y., Ma, T., & Zhou, C. (2020). Big geodata mining: Objective, connotations and research issues. Journal of Geographical Sciences. 30, 251-266. doi://10.1007/s11442-020-1726-7.
Phua, E.J., & Batcha, N.K. (2020). Comparative analysis of ensemble algorithms’prediction accuracies in education data mining. Journal of Critical Review. 7(3), 37-40 doi://10.31838/jcr.07.03.06.
Purnima, B., Arvind, K., Bholowalia, P., & Kumar, A. (2014). EBK-means: A clustering technique based on elbow method and K-means in WSN. International Journal of Computer Applications. 105(9),17-24. doi:// 10.5120/18405-9674.
R.A., D. (1999). A review of fire projects in Indonesia (1982-1998). doi://10.17528/cifor/000564.
Ren, Y., Wang, N., Li, M., & Xu, Z. (2020). Deep density-based image clustering. Knowledge-Based Systems. 197 (7). doi://10.1016/j.knosys.2020.105841.
Riyanto, I.A., Cahyadi, A., Kurniadhini, F., Bachtiar, H., Apriyana, D., & Caraka, B.K.A. (2020). Understanding forest fire management in indonesia from a global perspective. ASEAN Journal on Science & Technology for Development. 37(1). doi://10.29037/ajstd.593.
Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., & Liu, J. (2021). A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. EURASIP Journal on Wireless Communications and Networking. 31. doi://10.1186/s13638-021-01910-w.
Sirat, E.F., Setiawan, B.D., & Ramdani, F. (2019). Comparative analysis of K-means and isodata algorithms for clustering of fire point data in Sumatra region. The 4th International Symposium on Geoinformatics, ISyG 2018. doi://10.1109/ISYG.2018.8611879.
Sutomo, & van Etten, E. (2018). Spatial and temporal patterns of fires in tropical savannas of Indonesia. Singapore Journal of Tropical Geography. 39, 281-299. doi://10.1111/sjtg.12243.
Tacconi, L., Moore, P. F., & Kaimowitz, D. (2007). Fires in tropical forests - What is really the problem? Lessons from Indonesia. Mitigation and Adaptation Strategies for Global Change. 12(1)55-66.doi://10.1007/s11027-006-9040-y.
Thah, P. H., & Sitanggang, I.S. (2016). Contextual outlier detection on hotspot data in Riau Province using K-means algorithm. Procedia Environmental Sciences. 33, 258-268. doi://10.1016/j.proenv.2016.03.077.
Tork, H.F. (2012). Spatio-temporal clustering methods classification. Proceeding of the 7th Doctoral Symposium in Informatic Engineering.
Wijedasa, L.S., Sloan, S., Michelakis, D. G., & Clements, G.R. (2012). Overcoming limitations with landsat imagery for mapping of peat swamp forests in sundaland. Remote Sensing. 4, 2595–2618. doi://10.3390/rs4092595.
Wu, C., Liu, G., Zhang, X., He, Z., & Zhang, Z. (2016). Discussion on geological science big data and its applications. Kexue Tongbao/Chinese Science Bulletin. 61. doi://10.1360/N972015-01035.
Wu, J. (2012). Advances in K-means clustering: A data mining thinking. Springer Theses: recognizing outstanding Ph.D. Research.
Wu, W., & Peng, M. (2017). A data mining approach combining K-means clustering with bagging neural network for short-term wind power forecasting. IEEE Internet of Things Journal. 4(4), 979-986. doi://10.1109/JIOT.2017.2677578.
Young, N.E., Anderson, R.S., Chignell, S.M., Vorster, A.G., Lawrence, R., & Evangelista, P.H. (2017). A survival guide to Landsat preprocessing. Ecology, 98, 920–932. doi://10.1002/ecy.1730.
Zhu, Z., & Woodcock, C.E. (2014). Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing Environment, 144, 152–171. doi://10.1016/j.rse.2014.01.011.
Refbacks
- There are currently no refbacks.