KARAKTERISASI DAN POTENSI KATALIS KARBON AKTIF TERSULFONASI LIMBAH KAYU PADA REAKSI HIDROLISIS SEKAM PADI MENGGUNAKAN MICROWAVE

Lisna Efiyanti, Sutanto Sutanto, Nailah Hakimah, Dian Anggraini Indrawan, Gustan Pari

Abstract


Biomassa berlignoselulosa merupakan bahan baku berbagai produk yang menjanjikan untuk dikembangkan. Salah satu biomassa berlignoselulosa yaitu limbah yang didapatkan dari sisa penggergajian kayu untuk kepentingan industri, dapat dimanfaatkan sebagai bahan baku pembuatan karbon aktif yang berfungsi sebagai katalis. Pada penelitian ini, dilakukan proses pembuatan karbon aktif dari limbah campuran kayu kamper dan meranti melalui proses pirolisis suhu 500 °C yang dilanjutkan dengan proses sulfonasi menggunakan H2SO4 10N. Produk karbon aktif tersulfonasi (KA-SO3H) kemudian dikarakterisasi yang meliputi rendemen, kadar air, kadar abu, kadar zat terbang, karbon terikat, daya jerap iod sesuai SNI 06-3730-1995, keasaman menggunakan adsorpsi amonia, dan gugus fungsi menggunakan analisa FTIR. Selanjutnya karbon aktif tersulfonasi diuji aplikasinya pada reaksi hidrolisis sekam padi menggunakan microwave dengan variasi bobot sekam padi sebesar 2, 4, 6, 8, dan 10 g pada daya 400 dan 600 W selama 5, 7, dan 9 menit. Kadar glukosa filtrat hasil reaksi selanjutnya dianalisis menggunakan metode asam dinitrosalisilat (DNS). Kondisi optimum reaksi hidrolisis diperoleh pada penggunaan katalis karbon aktif tersulfonasi (daya 400 W, rasio sekam padi:katalis 1:8, serta waktu 9 menit) menghasilkan kadar glukosa sebesar 330,51 ppm dengan persen perolehan glukosa 61,97%, dan energi yang diperlukan sebesar 216 kJ.


Keywords


Glukosa; hidrolisis; limbah kayu; karbon aktif tersulfonasi; katalis

References


Amelia, R., Pandapotan, H., & Purwanto. (2013). Pembuatan dan karakterisasi katalis karbon aktif tersulfonasi sebagai katalis ramah lingkungan pada proses hidrolisis biomassa. Jurnal Teknologi Kimia Dan Industri, 2(4), 146–156.

Anggoro, D. D., Rispiandi, & Purwanto. (2015). Hydrolysis of Eichhornia crassipes to glucose over sulfonated active carbon catalyst. Malaysian Journal of Fundamental and Applied Sciences, 11(2), 67–69.

Anggraeni, P., Addarojah, Z., & Anggoro, D. D. (2013). Hidrolisis selulosa eceng gondok (Eichhornia crassipe) menjadi glukosa dengan katalis arang aktif tersulfonasi. Jurnal Teknologi Kimia Dan Industri, 2(3), 63–69.

Badan Pusat Statistik. (2017). Statistik Produksi Kehutanan 2016. Jakarta: Badan Pusat Statistik.

Chang, R. (2006). Kimia Dasar: Konsep-konsep Inti. (L. Simarmata, Ed.). Jakarta: Erlangga.

Chen, G., Wang, X., Jiang, Y., Mu, X., & Liu, H. (2018). Insights into deactivation mechanism of sulfonated carbonaceous solid acids probed by cellulose hydrolisis. Catalysis Today. http://doi.org/10.1016/j.cattod.2018.03.069

Chen, W., Tu, Y., & Sheen, H. (2011). Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Applied Energy, 88, 2726–2734. http://doi.org/10.1016/j.apenergy.2011.02.027

Chen, Z., Dou, X., Zhang, Y., Yang, M., & Wei, D. (2019). Rapid thermal-acid hydrolisis of spiramycin by silicotungstic acid under microwave irradiation. Environmental Pollution. http://doi.org/10.1016/j.envpol.2019.02.074

Cheng, J., Wang, N., Zhao, D., Qin, D., Si, W., Tan, Y., & Wang, D. (2016). The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions. Bioresource Technology, 220, 457–463. http://doi.org/10.1016/j.biortech.2016.08.064

Fraga, A. do C., Quitete, C. P. B., Loureiro, V. L., Sousa-Aguiar, E. F., Fonseca, I. M., & Rego, A. M. B. (2015). Biomass derived solid acids as effective hydrolysis catalysts. Journal of Molecular Catalysis A: Chemical, 1–10.

Fujimoto, S., Inoue, S., & Yoshida, M. (2018). High solid concentrations during the hydrothermal pretreatment of eucalyptus accelerate hemicellulose decomposition and subsequent enzymatic glucose production. Bioresource Technology Reports, 4, 16–20. http://doi.org/10.1016/j.biteb.2018.09.006

Goswami, M., Meena, S., Navatha, S., Rani, K. N. P., Pandey, A., Sukumaran, R. K., … Devi, B. L. A. P. (2015). Hydrolysis of biomass using a reusable solid carbon acid catalyst and fermentation of the catalytic hydrolysate to ethanol. Bioresource Technology, 1–4. http://doi.org/10.1016/j.biortech.2015.03.012

Guo, F., Fang, Z., Xu, C. C., & Jr., R. L. S. (2012). Solid acid mediated hydrolysis of biomass for producing biofuels. Progress in Energy and Combustion Science, 38, 672–690. http://doi.org/10.1016/j.pecs.2012.04.001

Hu, L., Lin, L., Wu, Z., Zhou, S., & Liu, S. (2015). Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. “Applied Catalysis B: Environmental,” 174, 225–243. http://doi.org/10.1016/j.apcatb.2015.03.003

Intaramas, K., Jonglertjunya, W., Laosiripojana, N., & Sakdaronnarong, C. (2018). Selective conversion of cassava mash to glucose using solid acid catalysts by sequential solid state mixed-milling reaction and thermo-hydrolysis. Energy, 149, 837–847. http://doi.org/10.1016/j.energy.2018.02.073

Jäger, G., & Büchs, J. (2012). Biocatalytic conversion of lignocellulose to platform chemicals. Biotechnol, 7, 1–15. http://doi.org/10.1002/biot.201200033

Jeong, H., Park, Y.-C., Seong, Y.-J., & Lee, S. M. (2017). Sugar and ethanol production from woody biomass via supercritical water hydrolisis in a continuous pilot-scale system using acid catayst. Bioresource Technology. http://doi.org/10.1016/j.biortech.2017.08.058

Kang, S., Fu, J., & Zhang, G. (2018). From lignocellulosic biomass to levulinic acid : A review on acid-catalyzed hydrolysis. Renewable and Sustainable Energy Reviews, 94, 340–362. http://doi.org/10.1016/j.rser.2018.06.016

Kostas, E. T., Beneroso, D., & Robinson, J. P. (2017). The Application of Microwave Heating in Bioenergy : A Review on the Microwave Pre- treatment and Upgrading Technologies for Biomass. Renewable and Sustainable Energy Reviews, 77, 12–27.

Latupeirissa, J., Tanasale, M. F. J. D. P., & Musa, S. H. (2018). Kinetika adsorpsi zat warna metilen biru oleh karbon aktif dari kulit kemiri (Aleurites moluccana ( L ) Willd). Indo.J.Chem.Res, 6(1), 12–21.

Li, Q., He, Y., Xian, M., Jun, G., Xu, X., Yang, J., & Li, L. (2009). Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresource Technology, 100, 3570–3575. http://doi.org/10.1016/j.biortech.2009.02.040

Li, S., Gu, Z., Bjornson, B. E., & Muthukumarappan, A. (2013). Biochar based solid acid catalyst hydrolyze biomass. Journal of Environmental Chemical Engineering, 1, 1174–1181. http://doi.org/10.1016/j.jece.2013.09.004

Lin, Q., Zhang, C., Wang, X., Cheng, B., Mai, N., & Ren, J. (2018). Impact of Activation on properties of carbon-based solid acid catalysts for the hydrothermal conversion of xylose and hemicelluloses. Catalysis Today. http://doi.org/10.1016/j.cattod.2018.03.070

Liu, B., Ba, C., Jin, M., & Zhang, Z. (2015). Effective conversion of carbohydrates into biofuel precursor 5-hydroxymethylfurfural ( HMF ) over Cr-incorporated mesoporous zirconium phosphate. Industrial Crops & Products, 76, 781–786. http://doi.org/10.1016/j.indcrop.2015.07.036

Liu, Y., Xiao, W., Xia, S., & Ma, P. (2013). SO3H-functionalized acidic ionic liquids as catalysts for the hydrolysis of cellulose. Carbohydrate Polymers, 92, 218–222. http://doi.org/10.1016/j.carbpol.2012.08.095

Miller, G. L. (1959). Use of DinitrosaIicyIic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. http://doi.org/10.1021/ac60147a030

Nata, I. F., Irawan, C., Mardina, P., & Lee, C. (2015). Carbon-based strong solid acid for cornstarch hydrolisis. Journal of Solid State Chemistry. http://doi.org/10.1016/j.jssc.2015.07.005

Onda, A., Ochi, T., & Yanagisawa, K. (2008). Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chemistry, 10, 1033–1037. http://doi.org/10.1039/b808471h

Pari, G., Sofyan, K., Syafii, W., Buchari, & Yamamoto, H. (2006). Kajian struktur arang dan lignin. Jurnal Penelitian Hasil Hutan, 24(1), 9–20.

Qi, X., Lian, Y., Yan, L., & Jr., R. L. S. (2014). One-step preparation of carbonaceous solid acid catalysts by hydrothermal carbonization of glucose for cellulose hydrolysis. Catalysis Communications, 57, 50–54. http://doi.org/10.1016/j.catcom.2014.07.035

Qu, H., Zhou, Y., Ma, Y., Zhao, P., Gao, B., Guo, M., & Feng, C. (2018). A green catalyst for hydrolysis of cellulose : Amino acid protic ionic Liquid. Journal of the Taiwan Institute of Chemical Engineers, 1–7. http://doi.org/10.1016/j.jtice.2018.09.024

Rinaldi, R., Meine, N., Stein, J. vom, Palkovits, R., & Schüth, F. (2010). Which Controls the Depolymerization of Cellulose in Ionic Liquids : The Solid Acid Catalyst or Cellulose ? Chem Sus Chem, 3, 266–276. http://doi.org/10.1002/cssc.200900281

Setyawan, M. N., Wardani, S., & Kusumastuti, E. (2018). Arang kulit kacang tanah teraktivasi H3PO4 sebagai adsorben ion logam Cu (II) dan diimobilisasi dalam bata beton. Indonesian Journal of Chemical Science, 7(3), 262–269.

Shrotri, A., Kobayashi, H., & Fukuoka, A. (2016). Air Oxidation of Activated Carbon to Synthesize a Biomimetic Catalyst for Hydrolysis of Cellulose. ChemSusChem, 9, 1299–1303. http://doi.org/10.1002/cssc.201600279

Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S., & Hara, M. (2008). Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc, 130(38), 12787–12793. http://doi.org/10.1021/ja803983h

Thangavelu, S. K., Rajkumar, T., Pandi, D. K., & Ahmed, A. S. (2019). Microwave assisted acid hydrolysis for bioethanol fuel production from sago pith waste. Waste Management, 86, 80–86.

Trisunaryanti, W. (2007). Material katalis. Yogyakarta: Jurusan Kimia MIPA UGM.

Tsubaki, S., Oono, K., Ueda, T., Onda, A., Yanagisawa, K., Mitani, T., & Azuma, J. (2013). Microwave-assisted hydrolysis of polysaccharides over polyoxometalate clusters. Bioresources Technology, 144, 67–73.

Utomo, M. P., & Laksono, E. W. (2007). Tinjauan umum tentang deaktivasi katalis pada reaksi katalis heterogen. In Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA (pp. 110–115). Yogyakarta: Universitas Negeri Yogyakarta.

Weiqi, W., & Shubin, W. (2018). Experimental and kinetic study of glucose conversion to levulinic acid in aqueous medium over Cr / HZSM-5 catalyst. Fuel, 225, 311–321. http://doi.org/10.1016/j.fuel.2018.03.120

Wibowo, S., Syafii, W., & Pari, G. (2011). Karakterisasi Permukaan Arang Aktif Tempurung Biji Nyamplung. Makara Teknologi, 15(1), 17–24.

Wu, M. N., Joiner, W. J., Dean, T., Yue, Z., Smith, C. J., Chen, D., … Koh, K. (2010). SLEEPLESS , a Ly-6 / neurotoxin family member , regulates the levels , localization and activity of Shaker. Nature Neuroscience, 13(1), 69–75. http://doi.org/10.1038/nn.2454

Wu, Y., Fu, Z., Yin, D., Xu, Q., Liu, F., Lu, C., & Mao, L. (2010). Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids. Green Chemistry, 696–700. http://doi.org/10.1039/b917807d

Xu, J., Chen, H., Kadar, Z., Thomsen, A. B., Schmidt, J. E., & Peng, H. (2011). Optimization of microwave pretreatment on wheat straw for ethanol production. Biomass and Bioenergy, 35, 3859–3864. http://doi.org/10.1016/j.biombioe.2011.04.054

Yabushita, M., Techikawara, K., Kobayashi, H., Fukuoka, A., & Katz, A. (2016). Zeolite-Templated Carbon Catalysts for Adsorption and Hydrolysis of Cellulose-Derived Long-Chain Glucans : Effect of Post-Synthetic Surface Functionalization. ACS Sustainable Chemistry & Engineering, 1–38. http://doi.org/10.1021/acssuschemeng.6b01796

Yu, F., Zhong, R., Chong, H., Smet, M., Dehaen, W., & Sels, B. F. (2016). Fast catalytic conversion of recalcitrant cellulose into alkyl levulinates and levulinic acid in the presence of soluble and recoverable sulfonated hyperbranched poly(arylene oxindole)s. Green Chemistry. http://doi.org/10.1039/c6gc02130a

Zhang, Z., & Zhao, Z. K. (2009). Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydrate Research, 344, 2069–2072. http://doi.org/10.1016/j.carres.2009.07.011

Zhong, C., Wang, C., Huang, F., Wang, F., Jia, H., Zhou, H., & Wei, P. (2015). Selective hydrolysis of hemicellulose from wheat straw by a nanoscale solid acid catalyst. Carbohydrate Polymers, 131, 384–391. http://doi.org/10.1016/j.carbpol.2015.05.070




DOI: https://doi.org/10.20886/jphh.2019.37.2.67-80

Refbacks

  • There are currently no refbacks.


JURNAL PENELITIAN HASIL HUTAN INDEXED BY:

More...


Copyright © 2015 | Jurnal Penelitian Hasil Hutan (JPHH, Journal of Forest Products Research)

eISSN : 2442-8957        pISSN : 0216-4329

       

JPHH is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.