UTILIZATION OF MICRO SISAL FIBERS AS REINFORCEMENT AGENT AND POLYPROPYLENE OR POLYLACTIC ACID AS POLYMER MATRICES IN BIOCOMPOSITES MANUFACTURE
DOI: 10.20886/ijfr.2013.10.1.11-20Abstract
Keywords
Full Text:
PDFReferences
Arzondo, L.M., A. Vazquez, J.M. Carella, and J.M. Pastor, 2004. A low-cost, low-fiber- breakage, injection molding process for long sisal fiber reinforced polypropylene. Polymer Engineering and Science 44: 1766-1772.
Berglund, L.A. 2004. Cellulose based nanocomposites. In: Natural fibers,biopolymers and their biocomposites (Ed.: Mohanty). CRC Press LCC.
Bledzki, A.K., O. Faruk, V.E and Sperber. 2006.Cars from bio-fibres. Macromol. Mater. Eng. 291: 449.
Bogoeva-Gaceva, G., M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile, M.E. Errico. 2007. Natural fiber eco- composites. Polymer Composites-2007. DOI 10.1002/pc.
Iwamoto, S., N.A. Nakagaito, H. Yano and M. Nogi.
Optically transparent composites reinforced with plant fiber-based nano- fibers. Applied Physics A 81: 1109-1112.
John, M.J. and S. Thomas. 2008. Biofibres and biocomposites. Carbohydrate Polymer 71: 343-364.
Joseph, P.V., K. Joseph and S. Thomas. 1999. Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites. Composites Science and Technology 99: 1625-1640.
Li, Y., Y.W. Mai and L. Ye. 2000. Sisal fibre and its composites: a review of recent developments.Composite Science and Technology 60:2037-2055.
Mathew A.P, K. Oksman and M. Sain. 2005. Mechanical properties of biodegradable composite from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Applied Polymer Science. 97: 2014-2025.
Mohanty, A.K., M. Misra, and L.T. Drzal. 2002. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. J. Polymers and the Environment, 10 (½): 19-26.
Mohanty, S., S.K. Verma, S.K. Nayak and S.S. Tripathy. 2004a. Influence of fiber treatment on the performance of sisal polypropylene composites. Journal of Applied Polymer Science 94:1336-1345.
Mohanty, S., S.K. Nayak, S.K. Verma, S.S. Tripathy. 2004b. Effect of MAPP as coupling agent on the performance of sisal- PP composites. Journal of Reinforced Plastics and Composites 23: 2047-2063.
Munawar, S.S. 2008. Properties of non-wood plant fiber bundles and the development of their composites. Dissertation, Department of Forestry and Biomaterials Science, Kyoto University, Japan, March 2008.
Nakagaito, A. N. and H. Yano. 2004. The effect of morphological changes from pulp fiber towards nano-scale fibrillated. Applied Physics A 78: 547-552.
Nakagaito, A. N. and H. Yano. 2005. Novel high strength biocomposites based on microfibrillated cellulose having nanoorder-unit web-like network structure. Applied Physics A 80: 155-159.
Netravali, A.N. and S. Chabba. 2003. Composites get greener. Materials Today, April 2003, Elsevier Science Ltd. pp. 22-28.
Oksman, K., M. Skrifvars and J.F. Selin. 2003. Natural fibers as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology 63: 1317-1324.
Suryanegara, L., A.N. Nakagaito, H. Yano. 2009. The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose reinforced PLA composites. Composites Science and Technology 69: 1187-1192.
Wambua, P., J. Ivens, and I. Verpoest. 2003. Natural fibres: can they replace glass in fibre reinforced plastics?. Composites Science and Technology 63: 1259-1264.
Zimmermann, T., E. Pohler and T. Geiger. 2004. Cellulose fibrils for polymer reinforcement. Advanced Engineering Materials 6 (9): 754-761.
Refbacks
- There are currently no refbacks.