DEVELOPMENT OF LOCAL ALLOMETRIC EQUATION TO ESTIMATE TOTAL ABOVEGROUND BIOMASS IN PAPUA TROPICAL FOREST
DOI: 10.20886/ijfr.2016.3.2.107-118Abstract
Keywords
Full Text:
PDFReferences
Achmad, E., Jaya, I. N. S., Saleh, M. B., & Kuncahyo, B. (2013). Biomass estimation using ALOS PALSAR for identification of lowland forest transition ecosystem in Jambi Province. Jurnal Manajemen Hutan Tropika (Journal of Tropical Forest Management), 19(2), 145–155. http://doi.org/10.7226/jtfm.19.2.145
Alvarez, E., Duque, A., Saldarriaga, J., Cabrera, K., de las Salas, G., del Valle, I., … Rodríguez, L. (2012). Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia. Forest Ecology and Management, 267, 297–308. http://doi.org/10.1016/j.foreco.2011.12.013
Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and Management, 257(8), 1684–1694. http://doi.org/10.1016/j.foreco.2009.01.027
Chaturvedi, R., & Raghubanshi, A. S. (2015). Allometric models for accurate estimation of aboveground biomass of teak in tropical dry forests of India. Forest Science, 61(09), 938–949.
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., … Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99. http://doi.org/10.1007/s00442-005-0100-x
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177–3190. http://doi.org/10.1111/gcb.12629
Clark, D. B., & Kellner, J. R. (2012). Tropical forest biomass estimation and the fallacy of misplaced concreteness. Journal of Vegetation Science, 23(6), 1191–1196. http://doi.org/10.1111/j.1654-1103.2012.01471.x
De Gier, A. (2003). A new approach to woody biomass assessment in woodlands and shrublands. In P. Roy (Ed.), Geoinformatics for Tropical Ecosystems (pp. 161–198). Dehradun, India: Bishen Singh Mahendra Pal Singh.
Eggleston, S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (Eds.). (2006). IPCC Guidelines for National Greehouse Gas Inventories, vol. 4: Agriculture, Forestry and Other Land Use. Hayama, Japan: Institute for Global Environmental Strategies (IGES) on behalf of the Intergovernmental Panel on Climate Change (IPCC).
Fahrmeir, L., Kneib, T., Lang, S., & Marx, B. (2013). Regression: models, methods and applications. Berlin, Germany: Springer.
Fayolle, A., Doucet, J.-L., Gillet, J.-F., Bourland, N., & Lejeune, P. (2013). Tree allometry in Central Africa: Testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks. Forest Ecology and Management, 305, 29–37.
FWI. (2004). Papua forestry map. Retrieved September 22, 2016, from http://papuaweb.org/gb/peta/fwi/
Gardner, R.H., & Urban, D.L. (2003). Model validation and testing: past lessons, present concerns, future prospects. In C. D. Ganham, J. J. Cole, & W. K. Lauenroth (Eds.), Models in Ecosystem Science. Princeton, New Jersey: Princeton University Press.
Henry, M., Besnard, A., Asante, W.A., Eshun, J., Adu-Bredu, S., Valentini, R., … Saint-André, L. (2010). Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. Forest Ecology and Management, 260(8), 1375-1388.
Hunter, J. T. (2015). Changes in allometric attributes and biomass of forests and woodlands across an altitudinal and rainfall gradient: What are the implications of increasing seasonality due to anthropogenic climate change? International Journal of Ecology, 2015.
Jaya, I. N. S., Agustina, T. L., Saleh, M. B., Shimada, M., Kleinn, C., & Fehrmann, L. (2012). Above ground biomass estimation of dry land tropical forest using ALOS PALSAR in Central Kalimantan, Indonesia. In Proceeding of The 3rd DAAD Workshop on: Forest in Climate Change Research and Policy: The Role of the Forest Management and Conservation in Complex International Setting (pp. 1–19). Dubai, UAE: DAAD.
Ketterings, Q.M., Coe, R., Noordwijk, M. Van, Ambagau, Y., & Palm, C. A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management, 146, 199–209.
Lewis, S. L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T. R., Ojo, L. O., … Wöll, H. (2009). Increasing carbon storage in intact African tropical forests. Nature, 457(7332), 1003–1006.
Lewis, S.L., Sonke, B., Sunderland, T., Begne, S. K., Lopez-Gonzalez, G., van der Heijden, G.M.F., … Zemagho, L. (2013). Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1625), 20120295–20120295. http://doi.org/10.1098/rstb.2012.0295
Lima, A. J. N., Suwa, R., de Mello Ribeiro, G. H. P., Kajimoto, T., dos Santos, J., da Silva, R. P., … Higuchi, N. (2012). Allometric models for estimating above- and below-ground biomass in Amazonian forests at São Gabriel da Cachoeira in the upper Rio Negro, Brazil. Forest Ecology and Management, 277, 163–172. doi:10.1016/j.foreco.2012.04.028
Maulana, S.I. (2014). Allometric equations for estimating aboveground biomass in Papua tropical forests. Indonesian Journal of Forestry Research, 2(1), 77–88.
Nelson, B.W., Mesquita, R., Pereira, J.L.G., De, S.G.A., Teixeira, G., & Bovino, L. (1999). Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management, 117, 149–167.
Ngomanda, A., Laurier, N., Obiang, E., Lebamba, J., Moundounga, Q., Gomat, H., … Picard, N. (2014). Forest Ecology and Management Site-specific versus pantropical allometric equations : Which option to estimate the biomass of a moist central African forest ? Forest Ecology and Management, 312, 1–9.
Nogueira, E. M., Fearnside, P. M., Nelson, B. W., & França, M. B. (2007). Wood density in forests of Brazil’s “arc of deforestation”: Implications for biomass and flux of carbon from land-use change in Amazonia. Forest Ecology and Management, 248(3), 119–135. http://doi.org/10.1016/j.foreco.2007.04.047
Sprugel, D.G. (1983). Correcting for bias in log-transformed allometric equations. Ecology. http://doi.org/10.2307/1937343
Stewart, J. L., Dunsdon, A. J., Hellin, J. J., & Hughes, C.E. (1992). Wood biomass estimation of Central American dry zone species. Oxford, England. Retrieved from http://www.bodley.ox.ac.uk/users/millsr/isbes/ODLF/TFP26.pdf
Tedeschi, L.O. (2006). Assessment of the adequacy of mathematical models. Agricultural Systems, 89(2-3), 225–247. http://doi.org/10.1016/j.agsy.2005.11.004
Refbacks
- There are currently no refbacks.