Emisi CO2 Kendaraan Bermotor Periode Kebijakan Pembatasan Sosial Berskala Besar (Studi Kasus: Ruas Jalan Di Jakarta Pusat)
Abstract
Emisi CO2 Kendaraan Bermotor Periode Kebijakan Pembatasan Sosial Berskala Besar (Studi Kasus: Ruas Jalan Di Jakarta Pusat). Jakarta Pusat sebagai jantung kota DKI Jakarta memiliki arus pergerakan orang dan barang yang tinggi terutama dalam penggunaan kendaraan bermotor. Pembakaran bahan bakar kendaraan bermotor menyebabkan semakin meningkatnya akumulasi CO2 di atmosfer. Pada awal tahun 2020 berbagai negara di dunia termasuk Indonesia dan Jakarta mengalami pandemi Covid19 yang mendorong pemerintah menerapkan pemberlakuan kebijakan pembatasan sosial berskala besar (PSBB) untuk menekan kasus penyebaran Covid19. Adanya PSBB mengakibatkan dampak terhadap berbagai aspek kehidupan masyarakat termasuk keterbatasan aktivitas dan mobilitas masyarakat menggunakan kendaraan bermotor. Tujuan penelitian ini adalah untuk mengetahui besaran emisi CO2 saat periode kebijakan PSBB di tiga ruas jalan Jakarta Pusat. Metode penelitian ini dilakukan secara deskriptif kuantitatif meliputi besaran konsumsi BBM masyarakat menggunakan kuesioner, data lalu lintas harian rata-rata (LHR) kendaraan bermotor bersumber dari Dinas Perhubungan DKI Jakarta dan besaran emisi CO2 menggunakan perangkat lunak Mobilev 3.0. Hasil penelitian ini didapatkan besaran rata-rata konsumsi BBM tiap kendaraan saat PSBB yaitu untuk sepeda motor sebesar 4,01 liter/unit kendaraan dan mobil sebesar 20,6 liter/unit kendaraan. Total LHR kendaraan bermotor keseluruhan pada tiga ruas jalan sebesar 159.621 kendaraan (PSBB Transisi) dan sebanyak 132.623 kendaraan (PSBB Total). Total besaran emisi CO2 keseluruhan dari tiga ruas jalan saat PSBB transisi sebesar 68.863 ton/tahun dan saat PSBB total emisi CO2 sebesar 52.287 ton/tahun. Urutan emisi CO2 tertinggi berada di Jalan MH. Thamrin, kemudian Jalan Abdul Muis dan emisi terendah berada di Jalan Prajurit KKO Usman Harun. Berdasarkan penelitian ini, secara keseluruhan terjadi penurunan emisi CO2 pada tiga ruas jalan sebesar 24% antara kondisi PSBB Transisi dan PSBB Total. Penurunan emisi CO2 terjadi karena adanya keterbatasan mobilitas masyarakat menggunakan kendaraan bermotor dan perubahan konsumsi BBM selama periode kebijakan PSBB.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Abu-Rayash, A., & Dincer, I. (2020). Analysis of mobility trends during the COVID-19 coronavirus pandemic: Exploring the impacts on global aviation and travel in selected cities. Energy Research and Social Science, 68(July), 101693. https://doi.org/10.1016/j.erss.2020.101693
Alam, M. M., Murad, M. W., Noman, A. H. M., & Ozturk, I. (2016). Relationships among carbon emissions, economic growth, energy consumption and population growth: Testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia. Ecological Indicators, 70, 466–479. https://doi.org/10.1016/j.ecolind.2016.06.043
Amin, M. C. (2017). Faktor-faktor yang mempengaruhi pertumbuhan kendaraan bermotor roda dua di Kota Pekanbaru. JOM Fekon, 4(1), 1106–1120.
Aritenang, W. (2019). Isu lingkungan dan perubahan iklim pada transportasi (udara, laut, darat dan kereta api). ITB Press.
Badan Pengatur Hilir Minyak dan Gas Bumi. (BPH Migas). (2020). Laporan permintaan bahan bakar 2020. Jakarta.
Badan Pusat Statistik (BPS). (2018). Provinsi DKI Jakarta dalam angka 2018. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf
Badan Pusat Statistik (BPS). (2020). Tinjauan big data terhadap dampak Covid19. http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf
Beck, M. J., & Hensher, D. A. (2020). Insights into the impact of COVID-19 on household travel and activities in Australia – The early days under restrictions. Transport Policy, 96(May), 76–93. https://doi.org/10.1016/j.tranpol.2020.07.001
Dantas, G., Siciliano, B., França, B. B., da Silva, C. M., & Arbilla, G. (2020). The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Science of the Total Environment, 729. https://doi.org/10.1016/j.scitotenv.2020.139085
Deendarlianto, Widyaparaga, A., Widodo, T., Handika, I., Chandra Setiawan, I., & Lindasista, A. (2020). Modelling of Indonesian road transport energy sector in order to fulfill the national energy and oil reduction targets. Renewable Energy, 146, 504–518. https://doi.org/10.1016/j.renene.2019.06.169
Fauzi, R. (2017). Effects of energy consumption, forest areas and economic growth toward CO2 emissions in 6 (six) ASEAN member countries: a panel data analysis approach. Ecolab, 11(1), 1–52. http://ejournal.forda-mof.org/ejournal-litbang/index.php/JKLH/article/view/3086/2217
Hickman, R., & Banister, D. (2014). Transport, climate change and the city. In Transport, Climate Change and the City. https://doi.org/10.4324/9780203074435
Himawan, W., & Sari, C. P. (2018). Aspek hukum dan lingkungan program inventarisasi emisi dalam penyusunan air quality management Kota Surakarta. Ekosains, 10(3), 15–21.
International Energy Agency. (2020). Pandemic Covid19 effect on life. European.
Kanniah, K. D., Kamarul Zaman, N. A. F., Kaskaoutis, D. G., & Latif, M. T. (2020). COVID-19’s impact on the atmospheric environment in the Southeast Asia region. Science of the Total Environment, 736(2), 139658. https://doi.org/10.1016/j.scitotenv.2020.139658
Kumar, P., Hama, S., Omidvarborna, H., Sharma, A., Sahani, J., Abhijith, K. V., Debele, S. E., Zavala-Reyes, J. C., Barwise, Y., & Tiwari, A. (2020). Temporary reduction in fine particulate matter due to ‘anthropogenic emissions switch-off’ during COVID-19 lockdown in Indian cities. Sustainable Cities and Society, 62(June), 102382. https://doi.org/10.1016/j.scs.2020.102382
Kusumawardani, D., & Navastara, A. M. (2018). Analisis besaran emisi gas CO2 kendaraan bermotor pada Kawasan Industri SIER Surabaya. Jurnal Teknik ITS, 6(2). https://doi.org/10.12962/j23373539.v6i2.24392
Le Quéré, C., Jackson, R. B., Jones, M. W., Smith, A. J. P., Abernethy, S., Andrew, R. M., De-Gol, A. J., Willis, D. R., Shan, Y., Canadell, J. G., Friedlingstein, P., Creutzig, F., & Peters, G. P. (2020). Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change, 10(7), 647–653. https://doi.org/10.1038/s41558-020-0797-x
Loske, D. (2020). The impact of COVID-19 on transport volume and freight capacity dynamics: An empirical analysis in German food retail logistics. Transportation Research Interdisciplinary Perspectives, 6, 100165. https://doi.org/10.1016/j.trip.2020.100165
Ma’arif, A. (2016). Analisis kebutuhan ruang terbuka hijau untuk menyerap emisi CO2 kendaraan bermotor di Surabaya (Studi Kasus: Koridor Jalan Tandes Hingga Benowo). Jurnal Teknik ITS, 5(2). https://doi.org/10.12962/j23373539.v5i2.18853
Mahato, S., Pal, S., & Ghosh, K. G. (2020). Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. Science of the Total Environment, 730, 139086. https://doi.org/10.1016/j.scitotenv.2020.139086
Miller, S. A., & Moore, F. C. (2020). Climate and health damages from global concrete production. Nature Climate Change, 10(5), 439–443. https://doi.org/10.1038/s41558-020-0733-0
Mobility, G. (2020). Mobility during Covid19. https://www.google.com/covid19/mobility/
Muziansyah, D., Sulistyorini, R., & Sebayang, S. (2015). Model emisi gas buangan kendaraan bermotor akibat aktivitas transportasi (studi kasus: Terminal Pasar Bawah Ramayana Kota Bandar Lampung). JSRDD, 3(1), 57–70.
Norouzi, N., Zarazua de Rubens, G., Choubanpishehzafar, S., & Enevoldsen, P. (2020). When pandemics impact economies and climate change: Exploring the impacts of COVID-19 on oil and electricity demand in China. Energy Research and Social Science, 68(March), 101654. https://doi.org/10.1016/j.erss.2020.101654
Permadi, D. A., Sofyan, A., & Kim Oanh, N. T. (2017). Assessment of emissions of greenhouse gases and air pollutants in Indonesia and impacts of national policy for elimination of kerosene use in cooking. Atmospheric Environment, 154, 82–94. https://doi.org/10.1016/j.atmosenv.2017.01.041
Ruddiman, W. F., & Carmichael, A. G. (2006). Pre-industrial depopulation, atmospheric carbon dioxide, and global climate. 106. www.pas.va/content/dam/accademia/pdf/sv106/sv106-ruddiman.pdf
Salman, M., Long, X., Dauda, L., & Mensah, C. N. (2019). The impact of institutional quality on economic growth and carbon emissions: Evidence from Indonesia, South Korea and Thailand. Journal of Cleaner Production, 241, 118331. https://doi.org/10.1016/j.jclepro.2019.118331
Sodri, A., & Garniwa, I. (2016). The effect of urbanization on road energy consumption and CO2 emissions in emerging megacity of Jakarta, Indonesia. Procedia - Social and Behavioral Sciences, 227, 728–737. https://doi.org/10.1016/j.sbspro.2016.06.139
Stratoulias, D., & Nuthammachot, N. (2020). Air quality development during the COVID-19 pandemic over a medium-sized urban area in Thailand. Science of the Total Environment, 746(2), 141320. https://doi.org/10.1016/j.scitotenv.2020.141320
Sukarno, I., Matsumoto, H., & Susanti, L. (2016). Transportation energy consumption and emissions - a view from city of Indonesia. Future Cities and Environment, 2(0), 6. https://doi.org/10.1186/s40984-016-0019-x
Wang, Y., Yuan, Y., Wang, Q., Liu, C. G., Zhi, Q., & Cao, J. (2020). Changes in air quality related to the control of coronavirus in China: Implications for traffic and industrial emissions. The Science of the Total Environment, 731(December 2019), 139133. https://doi.org/10.1016/j.scitotenv.2020.139133
Yang, L., Wang, Y., Lian, Y., & Han, S. (2020). Factors and scenario analysis of transport carbon dioxide emissions in rapidly-developing cities. Transportation Research Part D: Transport and Environment, 80(January), 102252. https://doi.org/10.1016/j.trd.2020.102252
DOI: https://doi.org/10.20886/jklh.2021.15.1.31-44
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Ecolab
This Journal Index by:
e-ISSN: 2502-8812, p-ISSN: 1978-5860
Ecolab is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.