DIFFERENTIALLY EXPRESSED GENES (DEGS) PADA Dryobalanops aromatica YANG DITUMBUHKAN PADA MEDIA GAMBUT DAN TANAH MINERAL

Yosie Syadza Kusuma, Fifi Gus Dwiyanti, Deden Derajat Matra, Ulfah Juniarti Siregar, Iskandar Zulkarnaen Siregar

Abstract


Dryobalanops aromatica is a highly economic value resin-producing tree and has been known as an important international trade commodity that is widely used in the perfume, cosmetic, medicine, and wood industries. In natural habitats, this species has been found to grow well on peatland and mineral soils. The information regarding adaptive genes in Indonesian native trees to abiotic stress is still very limited. The research was conducted to analyse the differentially expressed genes (DGEs) that can elucidate the role of several upregulated and down-regulated genes under peat media and mineral soil treatments. DGE analysis was carried out using R software, Bioconductor package 'edgeR'. Using the Benjamini and Hochberg approach to control FDR (FDR 0.05), with a Log2FC 2 and p-value of 0.05, showed 320 contigs were up-regulated and 439 contigs were down-regulated, while 58129 contigs were not significantly expressed. Furthermore, this study also presents an overview of the genes involved in different pathways, such as photosynthesis, carbon and energy metabolism, hormone-related genes, nitrogen metabolism, reactive oxygen species, and transcription factor. This information will be useful in understanding D. aromatica molecular responses to stress condition that may be of use for selecting genotypes in the breeding programs or peatlands restoration


Keywords


adaptation; Dryobalanops; transcriptome; RNA-seq

References


Barstow, M. Randi, A. (2018). Dryobalanops aromatica (errata version published in 2020). The IUCN Red List of Threatened Species 2018: e.T61998024A173026192. https://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T61998024A173026192.en.

Bhargava, S., & Sawant, K. (2013). Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant breeding, 132(1), 21-32. doi: 10.1111/pbr.12004

Cooper, J. A. (2018). Transcription factor. Encyclopedia Britannica. https://www.britannica.com/science/transcription-factor

Chua, L. S. L., Suhaida, M., Hamidah, M., & Saw, L. G. (2010). Malaysia plant Red List: Peninsular Malaysian Dipterocarpaceae. Research Pamphlet-Forest Research Institute Malaysia, (129).

Chung, H. S., & Howe, G. A. (2009). A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis. The Plant Cell, 21(1), 131-145. doi: 10.1105/tpc.108.064097

Csiszár, Jolán, Arnaud Hecker, Nikolaos E. Labrou, Peter Schröder, and Dean E. Riechers. "Plant glutathione transferases: Diverse, multi-tasking enzymes with yet-to-be discovered functions." Frontiers in plant science 10 (2019): 1304. doi:10.3389/fpls.2019.01304

Erpen, L., Devi, H. S., Grosser, J. W., & Dutt, M. (2018). Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell, Tissue and Organ Culture (PCTOC), 132(1), 1-25. Doi : 10.1007/s11240-017-1320-6

Fischer, C., Kugler, A., Hoth, S., & Dietrich, P. (2013). An IQ domain mediates the interaction with calmodulin in a plant cyclic nucleotide-gated channel. Plant and cell physiology, 54(4), 573-584. doi:10.1093/pcp/pct021

Gan, K. S., Choo, T., & Lim, S. C. (1999). Timber Notes-Medium Hardwoods I (Kapur, Kasai, Kelat, Keledang, Kempas). Timber Technology Bulletin, 11.

Gill, S. S., Anjum, N. A., Hasanuzzaman, M., Gill, R., Trivedi, D. K., Ahmad, I., ... & Tuteja, N. (2013). Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiology and Biochemistry, 70, 204-212. doi:10.1016/j.plaphy.2013.05.032

Hause, B., Demus, U., Teichmann, C., Parthier, B., & Wasternack, C. (1996). Developmental and tissue-specific expression of JIP-23, a jasmonate-inducible protein of barley. Plant and Cell Physiology, 37(5), 641-649. doi:10.1093/oxfordjournals.pcp.a028993

Hauser, F., Li, Z., Waadt, R., & Schroeder, J. I. (2017). SnapShot: abscisic acid signaling. Cell, 171(7), 1708-1708. doi:10.1016/j.cell.2017.11.045

Indriani, F. (2020). Karakterisasi genomik daya adaptasi Shorea balangeran (Korth.) Burck. [Disertasi]. Institut Pertanian Bogor.

Ishii, T. (2014). Transcriptome analysis of adrenocortical cells in health and disease. Cellular endocrinology in health and disease, 169-192. doi:0.1016/B978-0-12-408134-5.00011-1

Kamariyah, A. S., Ozek, T., Demirci, B., & Baser, K. H. C. (2012). Chemical composition of leaf and seed oils of Dryobalanops aromatica Gaertn.(Dipterocarpaceae). ASEAN Journal on Science and Technology for Development, 29(2), 105-114. doi:10.29037/ajstd.57

Kesten, C., Menna, A., & Sánchez-Rodríguez, C. (2017). Regulation of cellulose synthesis in response to stress. Current Opinion in Plant Biology, 40, 106-113. doi:10.1016/B978-0-12-408134-5.00011-1

Kim, Hyojin, Dongsu Choi, and Mi Chung Suh. "Cuticle ultrastructure, cuticular lipid composition, and gene expression in hypoxia-stressed Arabidopsis stems and leaves." Plant cell reports 36, no. 6 (2017): 815-827. doi:10.1007/s00299-017-2112-5

Kuku, A., Odekanyin, O., Adeniran, K., Adewusi, M., & Olonade, T. (2009). Purification of a mannose/glucose-specific lectin with antifungal activity from pepper seeds (Capsicum annuum). African Journal of Biochemistry Research, 3(6), 272-278. doi:10.5897/AJBR.9000199

Lal, N. K., Nagalakshmi, U., Hurlburt, N. K., Flores, R., Bak, A., Sone, P., ... & Dinesh-Kumar, S. P. (2018). The receptor-like cytoplasmic kinase BIK1 localizes to the nucleus and regulates defense hormone expression during plant innate immunity. Cell host & microbe, 23(4), 485-497. doi: 10.1016/j.chom.2018.03.010

Lannoo, N., & Van Damme, E. J. (2014). Lectin domains at the frontiers of plant defense. Frontiers in plant science, 5, 397. doi:10.3389/fpls.2014.00397

Lehmann, J., Atzorn, R., Brückner, C., Reinbothe, S., Leopold, J., Wasternack, C., & Parthier, B. (1995). Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments. Planta, 197(1), 156-162. doi:10.1007/BF00239952

Long, An, Jiang Zhang, Lin-Tong Yang, Xin Ye, Ning-Wei Lai, Ling-Ling Tan, Dan Lin, and Li-Song Chen. "Effects of low pH on photosynthesis, related physiological parameters, and nutrient profiles of citrus." Frontiers in plant science 8 (2017): 185. doi:10.3389/fpls.2017.00185

Matra, D. D., Kozaki, T., Ishii, K., Poerwanto, R., & Inoue, E. (2019). Comparative transcriptome analysis of translucent flesh disorder in mangosteen (Garcinia mangostana L.) fruits in response to different water regimes. Plos one, 14(7), e0219976. doi:10.1371/journal.pone.0219976

Medina-Macedo, L., de Lacerda, A. E. B., Sebbenn, A. M., Ribeiro, J. Z., Soccol, C. R., & Bittencourt, J. V. M. (2016). Using genetic diversity and mating system parameters estimated from genetic markers to determine strategies for the conservation of Araucaria angustifolia (Bert.) O. Kuntze (Araucariaceae). Conservation Genetics, 17(2), 413-423. doi:0.1007/s10592-015-0793-2

Mindawati N., & Waluyo T. K. (2019). Bunga Rampai Pengembangan Hasil Hutan Bukan Kayu Indonesia untuk Mendukung Sustainable Development Goals. Di dalam: Tata HL (Ed.). Bogor (ID): IPB Press

Nianiou-Obeidat, I., Madesis, P., Kissoudis, C., Voulgari, G., Chronopoulou, E., Tsaftaris, A., & Labrou, N. E. (2017). Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant cell reports, 36(6), 791-805. doi: 10.1007/s00299-017-2139-7

Pandian, B. A., Sathishraj, R., Djanaguiraman, M., Prasad, P. V., & Jugulam, M. (2020). Role of cytochrome P450 enzymes in plant stress response. Antioxidants, 9(5), 454. doi: 10.3390/antiox9050454

Richards, K. D., Schott, E. J., Sharma, Y. K., Davis, K. R., & Gardner, R. C. (1998). Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant physiology, 116(1), 409-418. doi:10.1104/pp.116.1.409

Rontein, D., Dieuaide-Noubhani, M., Dufourc, E. J., Raymond, P., & Rolin, D. (2002). The metabolic architecture of plant cells: stability of central metabolism and flexibility of anabolic pathways during the growth cycle of tomato cells. Journal of Biological Chemistry, 277(46), 43948-43960. doi:10.1074/jbc.M206366200

Sakamoto, H., Matsuda, O., & Iba, K. (2008). ITN1, a novel gene encoding an ankyrin‐repeat protein that affects the ABA‐mediated production of reactive oxygen species and is involved in salt‐stress tolerance in Arabidopsis thaliana. The Plant Journal, 56(3), 411-422. doi: 10.1111/j.1365-313X.2008.03614.x

Siregar, I. Z., Dwiyanti, F. G., Siregar, U. J., & Matra, D. D. (2020). De novo assembly of transcriptome dataset from leaves of Dryobalanops aromatica (Syn. Dryobalanops sumatrensis) seedlings grown in two contrasting potting media. BMC Research Notes, 13(1), 1-4. doi:10.1186/s13104-020-05251-7

Sun, L. R., Hao, F. S., Lu, B. S., & Ma, L. Y. (2010). AtNOA1 modulates nitric oxide accumulation and stomatal closure induced by salicylic acid in Arabidopsis. Plant signaling & behavior, 5(8), 1022-1024. doi:10.4161/psb.5.8.12293

Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., ... & Browse, J. (2007). JAZ repressor proteins are targets of the SCF COI1 complex during jasmonate signalling. Nature, 448(7154), 661-665. doi.org/10.1038/nature05960

Wagner, U., Edwards, R., Dixon, D. P., & Mauch, F. (2002). Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant molecular biology, 49(5), 515-532. doi:10.1023/A:1015557300450

You, H., Liu, Y., Minh, T. N., Lu, H., Zhang, P., Li, W., ... & Li, Q. (2020). Genome-wide identification and expression analyses of nitrate transporter family genes in wild soybean (Glycine soja). Journal of Applied Genetics, 61(4), 489-501. Doi: 10.1007/s13353-020-00571-7

Zhang, D. P. (2014). Abscisic acid: metabolism, transport and signaling. Springer Netherlands.

Zhang, S., Wu, J., Yuan, D., Zhang, D., Huang, Z., Xiao, L., & Yang, C. (2014). Perturbation of auxin homeostasis caused by mitochondrial FtSH4 gene-mediated peroxidase accumulation regulates Arabidopsis architecture. Molecular Plant, 7(5), 856-873. doi:10.1093/mp/ssu006

Zhu, Y., Li, H. J., Su, Q., Wen, J., Wang, Y., Song, W., ... & Guo, H. (2019). A phenotype-directed chemical screen identifies ponalrestat as an inhibitor of the plant flavin monooxygenase YUCCA in auxin biosynthesis. Journal of Biological Chemistry, 294(52), 19923-19933. doi:10.1074/jbc.RA119.010480




DOI: https://doi.org/10.20886/jpth.2021.15.2.115-128

Refbacks





Copyright (c) 2021 Jurnal Pemuliaan Tanaman Hutan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Jurnal Pemuliaan Tanaman Hutan Indexed By:

 

Copyright of Jurnal Pemuliaan Tanaman Hutan (JPTH)

eISSN : 2527-8665   pISSN : 1693-7147

48